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Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures
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A two-fluid lattice Boltzmann model for binary mixtures is developed. The model is derived formally from
kinetic theory by discretizing two-fluid Boltzmann equations in which mutual collisions and self-collisions are
treated independently. In the resulting lattice Boltzmann model, viscosity and diffusion coefficients can be
varied independently by a suitable choice of mutual- and self-collision relaxation-time scales. Further, the
proposed model can simulate miscible and immiscible fluids by changing the sign of the mutual-collision term.
This is in contrast to most existing single-fluid lattice Boltzmann models that employ a single-relaxation-time
scale and hence are restricted to unity Prandtl and Schmidt numbers. The extension of binary mixing model to
multiscalar mixing is quite straightforward.
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I. INTRODUCTION

In many practical flows involving pollutant dispersio
chemical processing, and combustor mixing and react
mass and momentum transport within multispecies flu
plays an important role. For these flows, it can be difficult
construct continuum-based models from first principles. F
ther, these flows typically involve complex geometry and
multiple phases making computation with continuum-ba
models quite complicated. Therefore, for these flows, ther
a growing interest in using the lattice Boltzmann equat
@1–7#.

In general, for computing fluid flow of any type, the la
tice Boltzmann equation~LBE! @1–7# offers several compu
tational advantages over continuum-based methods while
taining the flow physics intact. Although the origins of th
modern LBE can be traced back to lattice-gas autom
@8–10#, the new LBE models are free of some well-know
defects associated with their predecessors. Recent w
have unequivocally established that the lattice Boltzma
equation is in fact connected to kinetic theory@4–6# and
completely consistent with the fundamental conservat
principles governing fluid flow@11–13#. In these papers,a
priori derivation of the lattice Boltzmann equation from th
parent continuous Boltzmann equation is developed@4–6#.
The Navier-Stokes equation also has its basis in the Bo
mann equation—the former can be derived from the la
through the Chapman-Enskog analysis@14#. That very same
Chapman-Enskog analysis can be used to show that the
tice Boltzmann methodology can be applied to solve a
conservation law of the continuous Boltzmann equation
cluding the Navier-Stokes equations. It has also been pro
that the lattice Boltzmann equation tantamounts to an
plicit finite difference scheme of the Navier-Stokes equatio
with second-order spatial accuracy and first-order temp
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accuracy with a nonzero compressibility@11–13#. The
present day lattice Boltzmann equation, with its high-fidel
physics and computation-efficient formulation, is a viable
ternative to the continuum methods for simulating flu
flows. In fact, it can be argued that for many complex pro
lems involving multifluid phenomena, the physics can
more naturally captured by the Boltzmann-equation ba
methods rather than Navier-Stokes equation based meth
Recently LBE method has been extended to multiph
flows @15–18# and multicomponent flows@19–31#, flows
through porous media@32,33#, and particulate suspensions
fluids @34–37#. Most existing LBE models for multicompo
nent fluids@19–27# tend to be somewhat heuristic and ma
the single-fluid assumption. The single-relaxation-time
Bhatnagar-Gross-Krook~BGK! approximation@38# is used
in most existing models@21–27# restricting applicability to
unity Prandtl and Schmidt numbers.

A rigorous mathematical development of multifluid lattic
Boltzmann equation for multicomponent fluids is still in i
infancy and such is the object of the present work. As a fi
step, in this work we develop a two-fluid lattice Boltzman
model which is based on kinetic theory for binary mixture
Such a model would be capable of~i! simulating arbitrary
Schmidt and Prandtl numbers, and~ii ! accurately modeling
the interaction between miscible and immiscible fluids. W
follow a general approach within the framework of kinet
theory for developing the lattice Boltzmann models for m
tifluid mixtures. This work is a part of our ongoing effort t
set the lattice Boltzmann equation on a more rigorous th
retical foundation and extend its use to more complex flo
We derive a discretized version of the continuum Boltzma
equations for binary mixtures. The extension of this meth
ology to multifluid mixtures is relatively straightforward.

Kinetic theory of gas mixtures has received much att
tion in literature@14,39–51#. Many of the kinetic models for
gas mixtures are based on the linearized Boltzmann equa
@38,52,53#, especially the single-relaxation-time model d
to Bhatnagar, Gross, and Krook—the celebrated BGK mo
@38#. The kinetic-theory mixtures model employed in th
work was proposed by Sirrovich@43#, which is also linear in
nature.

This paper is a detailed follow-up to our previous wo
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L.-S. LUO AND S. S. GIRIMAJI PHYSICAL REVIEW E67, 036302 ~2003!
published as a Rapid Communication in Physical Review
@31# and it is organized as follows. Section II provides a br
review for some of the existing kinetic models of mixtur
that form the theoretical basis of the present work. Sec
III contains the derivation of the lattice Boltzmann model f
binary mixtures from the corresponding continuous Bol
mann equations. In Sec. IV, the hydrodynamic equations
the lattice Boltzmann model are determined. Section V c
tains the derivation of the diffusion force and the mutu
diffusion coefficient in the lattice Boltzmann model, and t
diffusion-advection equations for the mass and molar c
centrations of the system. Section VI discusses the short
long time behaviors of the model. Section VII concludes
paper with a summary of the present work and possible
rections of future work. The three appendixes contain
details of:~a! the iterative procedure to solve the Boltzma
equation;~b! the discretized equilibrium distribution func
tion; and, ~c! the Chapman-Enskog analysis of the latti
Boltzmann model for binary mixtures.

II. KINETIC THEORY OF GAS MIXTURES

Following a procedure similar to the derivation of th
Boltzmann equation for a pure system of single species,
can deriveN simultaneous equations for a system ofN spe-
cies by reducing the appropriate Liouville equation. For
sake of simplicity without loss of generality, we shall on
discuss the Boltzmann equations for a binary system h
The simultaneous Boltzmann equations for a binary sys
are

] t f
A1j•“ f A1aA•“j f A5QAA1QAB, ~1a!

] t f
B1j•“ f B1aB•“j f B5QBA1QBB, ~1b!

whereQAB5QBA is the collision term due to the interactio
among two different speciesA and B. Obviously, for an
N-component system, there will beN such equations, eac
containingN-collision terms on the right-hand side. In ge
eral, the collision term is

QAB5E djBdV sABijB2jAi@ f 8Af 8B2 f Af B#, ~2!

wheresAB is the differential cross section ofA-B collision,
andV is the solid angle, andf 8A( f 8B) and f A ( f B) denote the
post-collision and precollision states of the particleA (B),
respectively. Obviously, the equations for a system of m
tiple species are much more formidable to analyze than
comparable Boltzmann equation for a pure system of sin
species. The first modeling objective is to find a suita
approximation for the collision term given by Eq.~2! that
would substantially simplify computation without compr
mising the essential physics.

The justified approximation of the collision terms mu
rely on our clear understanding of the underlying physi
system. In a system of multiple species, there are a num
of competing equilibration processes occurring simu
neously. The approach to equilibrium in the system can
roughly divided into two stages. First, each individual sp
03630
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cies equilibrates within itself so that its local distributio
function approaches a local Maxwellian distribution. Th
process of individual equilibration is also referred to as Ma
wellization. Second, the entire system equilibrates so that
velocity and temperature differences among different spe
vanishes eventually. There are many different time scale
the equilibrating process of a multicomponent system. In
dition, the Maxwellization itself can take place in many sc
narios depending on the molecular weights and mass f
tions of the participating species. Consider two mixtur
each consisting of a light and heavy gas. In mixture 1,
total mass of each species is the same, implying sma
number density for the heavier gas. In mixture 2, the num
densities of the two species is the same, implying the m
density~or mass fraction! of the heavier species is larger. I
mixture 1, the Maxwellization of light species is mostly du
to self-collision, whereas the equilibration of the heavier s
cies is predominantly due to cross collisions. This is due
the fact that the number of molecules of heavy species av
able for collisions is small. In mixture 2, where the numb
densities of the two species are comparable, Maxwelliza
of both species involves self-collision and cross collisio
When the process of Maxwellization is complete, the str
of the corresponding species becomes isotropic, or equ
lently the heat conduction relaxes. Therefore, the time sc
on which the stress becomes isotropic or the heat conduc
relaxes is a suitable measure of Maxwellization.

The equilibration among different species can also ta
place in several different manners. Velocity and temperat
differences may equilibrate on the same temporal scale~as in
mixture 1 above! or on vastly different scales~as in mixture
2!. In addition, these equilibrating processes need not to
cur sequentially but also concurrently with the Maxwelliz
tion.

There is a significant amount of literature on gas mixtu
within the framework of kinetic theory@14,39–51#. In the
Chapman-Enskog analysis for a simple gas, one assum
clear separation of scales in space and time, that is, to
tinguish the spatial and temporal scales, which are m
larger than the mean free path and mean free time. An a
ogy for a mixture becomes difficult because of multiplici
of length scales. In the classic work of Chapman and Co
ing @14#, the full Boltzmann equations~with integral colli-
sion terms! for a binary mixture are analyzed under the a
sumptions that all scales are roughly of the same order
equivalently, that the phenomenon to be examined is smo
with respect to all collisional scales. Determination of t
various transport coefficients—viscosities, diffusivities, th
mal diffusivities and conductivity—was the main objectiv
of that work. However, no attempt was made to describe
dynamics of the evolution.

Direct analysis or computation of the Boltzmann equat
is not generally feasible. This is due to the difficulty involve
in evaluating the complex integral collision operators.
make further progress one can follow one of two approach
The first, Grad’s moment method, is to obtain the no
normal solutions of the Boltzmann equation~i.e., the solu-
tions beyond the hydrodynamic or conserved variables! @54#.
Closure modeling would then be required to express the
closed moments in terms of the closed moments. And
2-2
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THEORY OF THE LATTICE BOLTZMANN METHOD: . . . PHYSICAL REVIEW E 67, 036302 ~2003!
second is to derive simplified model equations from the
Boltzmann equation, which are more manageable to so
Many model equations are influenced by Maxwell’s a
proach to solving the Boltzmann equation by making ext
sive use of the properties of the Maxwell molecule@55# and
the linearized Boltzmann equation. The simplest model eq
tions for a binary mixture is that by Gross and Krook@41#,
which is an extension of the single-relaxation-time model
a pure system—the celebrated BGK model@38#.

With the BGK approximation@38,41#, the collision inte-
gralsQs§ @s,§P(A,B)# can be approximated by following
linearized collision terms:

Jss52
1

ls
@ f s2 f s(0)#, ~3a!

Js§52
1

ls§
@ f s2 f s§(0)#, ~3b!

where f s(0) and f s§(0) are Maxwellians

f s(0)5
ns

~2pRsTs!D/2
e2(j2us)2/(2RsTs), ~4a!

f s§(0)5
ns

~2pRsTs§!
D/2

e2(j2us§)2/(2RsTs§), ~4b!

where D is the spatial dimension,Rs5kB /ms is the gas
constant of thes species,kB is the Boltzmann constant an
ms is the molecular mass of thes species. There are thre
adjustable relaxation parameters in the collision terms:ls ,
l§ , and ls§5(n§ /ns)l§s . The first Maxwellian f s(0) is
characterized by the conserved variables of each individ
species: the number densityns , the mass velocityus , and
the temperatureTs ; while the second Maxwellianf s§(0) and
f §s(0) is characterized by four adjustable parameters:us§ ,
u§s , Ts§ , andT§s . There are several considerations in d
termining these arbitrary parameters: simplicity of the res
ing theory, accuracy of approximation, and ease of comp
tion. Cross-collisional terms will be symmetric only if on
takesus§5u§s5u andTs§5T§s5T, whereu andT are the
velocity and temperature of the mixture. This is essentia
preserving a similarity to irreversible thermodynamics, es
cially the Onsager relation@56#. On the other hand, fewe
terms in the expansion off s aboutf s§(0) would be needed in
many cases if one choosesus§5us and Ts§5Ts , i.e.,
f s§(0)5 f s(0). One salient difference between usingu andT
of the mixture in the Maxwellianf s§(0) as opposed to using
us andTs for the species is that the former choice leads t
single-fluid theory, i.e., a set of hydrodynamic equations
the mixture, while the latter leads to a two-fluid theo
@43,49#, i.e., two sets of hydrodynamic equations for the s
cies. Obviously, in the cases where the properties betw
the two species are vastly different, the two-fluid theory
preferred@56#.

The cross-collision termJs§ can be better approximate
by expandingf s around the Maxwellian@43#
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Js§52
f s(0)

nskBTs
FmDcs•~us2u§!1mT

3

2 S cs
2

2RsTs
21D

3~Ts2T§!2Ms§S cs
2

2RsTs
21D ~us2u§!

2G , ~5!

wherecs5(j2us) is the peculiar~or thermal! velocity of
the s species, and

Ms§5mm

rsr§

r F 1

rs
1mm8

~ns2n§!

nsn§~ms1m§!
G , ~6!

and mD ,mT ,mm ,mm8 are positive and at most functions o
density and temperature@43#, the physical significances o
these parameters are to be discussed next.

We now consider the following model equations for
binary mixture due to Sirovich@43#:

] t f
s1j•“ f s1as•“j f s5Jss1Js§, ~7!

where the self-collision termJss is approximated with the
BGK model of Eq.~3a!, and the cross-collision termJs§ is
given by Eq. ~5!. When the external force is not prese
(as50), and if mD ,mT ,mm ,mm8 are considered as constan
~for the sake of simplicity! we can immediately obtain the
following moment equations from the above equations:

] t~us2u§!52mDS 1

rs
1

1

r§
D ~us2u§!, ~8a!

] t~Ts2T§!52mT

1

kB
S 1

ns
1

1

n§
D ~Ts2T§!

1
2

3kB
S Ms§

ns
2

M §s

n§
D ~us2u§!

2. ~8b!

The above equations describe the exponential decay of
velocity and temperature differences for the two species
discussed in the earlier remarks regarding the processe
Maxwellianization and equilibration in the mixture. Th
physical significances of the parametersmD , mT , mm , and
mm8 become apparent in the above equations—these pa
eters determine the relaxation rates in the Maxwellizat
processes.

Solving Eqs.~7! by means of iteration~cf. Ref. @43# or
Appendix A!, one first obtains

us5u§5u, ~9a!

Ts5T§5T, ~9b!

f s(0)5 f s§(0)~ns ,u,T!5
ns

~2pRsT!D/2
expF2

~j2u!2

2RsT G .
~9c!

Substituting the above results into the left-hand side of E
~7!, one has the following equation for the second-order
lution of f s @43#:
2-3
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f s§(0)~ns ,u,T!F n

ns
cs•ds1S cs ics j

RsT
2d i j D •Si j

1S cs
2

2RsT
2

5

2D cs•“ ln TG
52

1

ls
@ f s2 f s(0)#2

f s(0)

nskBTs
FmDcs•~us2u§!

1mTS cs
2

3RsTs
21D ~Ts2T§!

2Ms§S cs
2

3RsTs
21D ~us2u§!

2G , ~10!

wherecs5(j2us), and the diffusion forceds and the rate-
of-shear tensorSi j are given by

ds5“S ns

n D1
nsn§

nr
~m§2ms!“ ln p2

rsr§

rp
~as2a§!,

52d§ , ~11a!

Si j 5
1

2
~] iuj1] jui2

2
3“•ud i j !, ~11b!

and p5nkBT is the total pressure of the mixture. From th
above solution off s, one can compute for the relative ve
locity (us2u§), the temperature difference (Ts2T§), the
~traceless! stress tensorpi j , and the heat fluxq @43#:

~us2u§!52
nkBT

mD
ds852

n2

nsn§
Ds§ds8 , ~12a!

~Ts2T§!5
mDmm8

mT

msm§~ns2n§!

r~ms1m§!
~us2u§!

2, ~12b!

pi j 522kBTS ns

ls
1

n§

l§
DSi j 2

2mD

r S r§

ls
1

rs

l§
D

3@~us2u§! i~us2u§! j2
1
3 ~us2u§!

2d i j #, ~12c!

q5
5

2
kBT@ns~us2u!1n§~u§2u!#

2
5

2
kBTS rs

ls
1

r§

l§
D kB“T, ~12d!

where the diffusion force

ds85“S ns

n D1
Ts

T

nsn§

nr
~m§2ms!“ ln p2

rsr§

rp
~as2a§!,

~13!

and the binary diffusion coefficient@53# of the model

Ds§5
nsn§kBT

nmD
. ~14!
03630
The self-diffusion coefficientDss is a special case of the
above formula whenn5n§5ns . The viscosityn and ther-
mal conductivityk can also be read from the above formul
for pi j andq as the following:

n5kBTS ns

ls
1

n§

l§
D , ~15a!

k5
5

2
kB

2TS rs

ls
1

r§

l§
D . ~15b!

The above transport coefficients are determined by the
rametersls andmD , mT , mm , andmm8 : ls determines the
viscosity and the thermal conductivity of thes species and
the combination ofls’s determines that of the mixture;mD
determines the diffusion coefficients in the model; a
mDmm8 /mT determines the diffusion of the temperature diffe
ence due to velocity difference.

Two salient features of the model described by Eqs.~7!
should be addressed. First, the cross-collision termJs§ of Eq.
~5! is exact for the Maxwell molecules obeying the inver
fifth-power interaction potential. Equation~7!, therefore, can
be considered to be a model for the Maxwell gas@43#. One
immediate consequence of this approximation is that the
fusion force of Eq.~12a! does not contain a thermal diffusio
term, as it should. Second, the BGK approximation of t
self-collision termJss of Eq. ~3a! imposes the limitation of a
unity Prandtl number. However, both these limitations of t
model can be overcome by using the linearized Boltzma
equation@57–59# with multiple relaxation times and a non
linear approximation of the collision terms@43,49,60#.

III. THE LATTICE BOLTZMANN MODEL FOR BINARY
MIXTURE

We shall construct a lattice Boltzmann model for bina
mixtures based on the model given by Eq.~7!. In the present
work we only consider the isothermal case such thatTs

5T§5Ts§5T5const. Consequently, we can also ignore t
terms related to thermal effects inJs§ of Eq. ~5! by setting
mT5mm5mm8 50, i.e.,

Js§52
1

tD

r§

r

f s(0)

RsT
~j2u!•~us2u§!, ~16!

where the equilibrium functionf s(0) for the s species is
chosen to be the Maxwellian equilibrium distribution d
pending on the mass velocity of thes speciesus as the
following:

f s(0)5
rs

~2pRsT!D/2
expF2

~j2us!2

2RsT G . ~17!

Note that from hereafterf s(0) and f s are the single particle
mass density distribution functions, as opposed to the sin
particle number density distribution functions. We can der
the lattice Boltzmann equation by discretizing the mod
equation ~7!, following the procedure described in Ref
@4,5#:
2-4
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f a
s~xi1ead t ,t1d t!2 f a

s~xi ,t !5Ja
ss1Ja

s§2Fa
sd t , ~18!

where the self-collision termJa
ss , the cross-collision term

Ja
s§ , and the forcing termFa are given by

Ja
ss52

1

ts
@ f a

s2 f a
s(0)#, ~19a!

Ja
s§52

1

tD

r§

r

f s(eq)

RsT
~ea2u!•~us2u§!, ~19b!

Fa
s52wars

ea•as

RsT
, ~19c!

wherers andr§ , andus andu§ are the mass densities an
flow velocities for speciess and§, they are the moments o
the distribution functions:

rs5(
a

f a
s5(

a
f a

s(0) , ~20a!

rsus5(
a

f a
sea5(

a
f a

s(0)ea , ~20b!

andr andu are respectively, the mass density and the ba
centric velocity of the mixture:

r5rs1r§ , ~21a!

ru5rsus1r§u§ . ~21b!

The collision termsJa
ss and Ja

s§ are constructed in such
way to respect the mass and momentum conservation l
~The derivation of the forcing termFa

s is given in Refs.
@17,18#.!

The equilibrium distribution functionf a
s(0) has the follow-

ing form in general~cf. Appendix B!:

f a
s(0)5F11

1

RsT
~ea2u!•~us2u!G f a

s(eq) , ~22a!

f a
s(eq)5warsF11

~ea2u!•u

RsT
1

~ea•u!2

2~RsT!2G , ~22b!

where coefficients$wa% depend on the discrete velocity s
$ea%. For the sake of concreteness and simplicity witho
losing generality, we shall restrict ourselves to a nin
velocity model on a two-dimensional square lattice~D2Q9
model!. In this case,

wa5H 4/9, a50

1/9, a5124

1/36, a5528.

~23!
03630
-

s.

t
-

IV. HYDRODYNAMICS

The left-hand side of Eq.~18! can be expanded in a Taylo
series ind t ~up to second order ind t) and the equation can b
rewritten as

d tDa f a
s1

1

2
d t

2Da
2 f a

s5Ja
ss1Ja

s§2Fa
sd t , ~24!

whereDa5] t1ea•“. Obviously,

(
a

Ja
ss5(

a
Ja

§s5(
a

Fa
s50, ~25a!

(
a

Ja
ssea50, ~25b!

(
a

Ja
§sea52

1

tD

rsr§

r
~us2u§!, ~25c!

(
a

Fa
sea52rsas . ~25d!

By means of the Chapman-Enskog analysis~multiple-scale
expansion!, we can derive the hydrodynamic equations f
the mixture from Eq.~24! ~see details in Appendix C!.

The mass conservation laws for each species and the
ture can be derived immediately from Eq.~24!:

] trs1“•~rsus!5
1

2
“•Frsr§

tDr
~us2u§!G , ~26!

] tr1“•~ru!50. ~27!

Note that the mass conservation does not hold for each i
vidual species at the Navier-Stokes level, although it doe
the Euler level. However, the mass conservation law d
apply to the mixture as a whole. The right-hand side of E
~26! reflects the mass flux due to diffusion.

We can also derive the Euler equation for each specie

rs] t0
us1rsus•“us52“ps1rsas2

1

tDd t

rsr§

r

3~us2u§!, ~28!

whereps5nskBT5rsRsT is the partial pressure of thes
species, and the Navier-Stokes equation:

rs] tus1rsus•“us52“ps1rsns¹2us1rsas

2
1

tDd t

rsr§

r
~us2u§!, ~29!

where the viscosity of thes species is

ns5RsT~ts2 1
2 !d t . ~30!

Equation~29! is consistent with the results in Ref.@49#.
2-5
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V. DIFFUSION IN ISOTHERMAL MIXTURES

The difference between the two Navier-Stokes equati
for individual species (s and§) leads to the following equa
tion:

1

tDd t
~us2u§!52

rp

rsr§
ds2$] tdu1“•~ ūdu!

1¹2~nsus2n§u§!%, ~31!

where du5(us2u§), ū5 1
2 (us1u§), “•(ūdu)5ū•“du

1du•“ū, and the diffusion force

ds5
rsr§

rp F S 1

rs
“ps2

1

r§
“p§D2~as2a§!G

5“S ns

n D1S ns

n
2

rs

r D“ ln p1
rsr§

rp
~a§2as!

5“S ns

n D1
nsn§

nr
~m§2ms!“ ln p1

rsr§

rp
~a§2as!

52d§ , ~32!

wherep5nkBT is the total pressure of the mixture, and t
total number densityn is

n5ns1n§5
rs

ms
1

r§

m§
. ~33!

The diffusion force includes the effects due to the mo
concentration gradient“(ns /n), the total pressure gradien
and the particle mass difference (ms2m§)“ ln p, and the
external force (as2a§).

It has already been assumed in the derivation of the t
fluid equations that derivatives are slowly varying on t
time scale of Maxwellization@49#. Therefore, the terms in
side the curly brackets Eq.~31! can be neglected in the dif
fusion time scale. Thus, to the leading order, we have

~us2u§!52tDd t

rp

rsr§
ds . ~34!

Also, by definition@53#, @Eqs.~6.5–7a!#, we have

~us2u§!52
n2

nsn§
Ds§ds , ~35!

thus the mutual diffusion coefficient in the mixture is

Ds§5
rkBT

nmsm§
tDd t . ~36!

Note that the difference between the above formula and
~14! is due to the difference of a factorrsr§ /r betweenJa

s§

of Eq. ~19b! andJs§ of Eq. ~5!, i.e.,

tDd t5
rsr§

r

1

mD
.
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The mass flux of thes species, by definition, is

js5rs~us2u!52tDd tpds ,

where we have used the identity thatr(us2u)5r§(us

2u§). The continuity equation~26! for thes species can be
written as

Dtrs1rs“•u1“• js52
1

2
d t“•~pds!, ~37!

whereDt5(] t1u•“). By assuming the incompressibility o
the fluid ~i.e.,“•u50), we obtain the following advection
diffusion equation for an isothermal mixture:

] trs1u•“rs5“•tD* d tpds , tD* [~tD2 1
2 !. ~38!

Similar to the He´non correction for the viscosity@61#, the
diffusivity is modified by the second-order discrete effect

Ds§* 5
rkBT

nmsm§
S tD2

1

2D d t5
rkBT

nmsm§
tD* d t . ~39!

Obviously, the self-diffusion coefficient in the lattice Boltz
mann model for thes species is

Dss* 5
kBT

ms
tD* d t . ~40!

The mass concentrationf and molar concentrationw ~di-
mensionless order parameters! are defined as

f5
~rs2r§!

~rs1r§!
, w5

~ns2n§!

~ns1n§!
, ~41!

and they related to each other

f5
~ms2m§!1~ms1m§!w

~ms1m§!1~ms2m§!w
, ~42a!

w5
~m§2ms!1~m§1ms!f

~m§1ms!1~m§2ms!f
. ~42b!

The diffusion force can be written in terms off andw:

ds5
1

2 F“w1~w2f!“ ln p1
r~12f2!

2p
~a§2as!G .

The nonlinear diffusion-advection equations satisfied byf
andw can be derived from Eq.~38!:

] tf1u•“f5
1

r
“•~Df*“f1F!, ~43a!

] tw1u•“w5
A

n
“•~Dw*“w1F!, ~43b!

where

Df* 5
ptD* d t

msm§
S r

nD 2

5
kBT

msm§

r2

n
tD* d t , ~44a!
2-6
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Dw* 5ptD* d t , ~44b!

F5@~w2f!“p1 1
2 r~12f2!~a§2as!#tD* d t , ~44c!

A5
1

2 F ~12w!

ms
1

~11w!

m§
G . ~44d!

Obviously, whenms5m§ , w5f, and then Eq.~43a! and
Eq. ~43b! become identical.

VI. SHORT AND LONG TIME BEHAVIORS

As discussed in Sec. II, short and long time behaviors o
binary mixture involve different Maxwellization and equil
bration processes. This is reflected in the macroscopic e
tions derived in preceding sections. In an initial stage~short
time!, the diffusion velocity (us2u§) is significant, thus the
system is described 2(D11) equations, i.e., two sets o
mass and momentum conservation laws for each spe
given by Eqs.~26! and ~29!. As the system equilibrates s
that the diffusion velocity (us2u§) is diminishing, the phys-
ics is then described by (D12) equations: the continuity
equation of the mixture, Eq.~27!, the Navier-Stokes equatio
for the barycentric velocity of the mixtureu, and the
diffusion-advection equation for the mass@Eq. ~43a!# or mo-
lar @Eq. ~43b!# concentrations. Only in very late stage
equilibration, the concentration behaves more or less a
passive scalar.

The Navier-Stokes equation foru is

r] tu1ru•“u52“p1“•P1ra, ~45!

wherep5kBT(ns1n§), ra5rsas1r§a§ , and

P5(
s

rsns@~“us!1~“us!†#

'~rsns1r§n§!@~“u!1~“u!†#. ~46!

In the derivation of Eq.~45!, we ignore two terms: one is
(tDDs§* n/RsTnsn§)“(pds)2, and the other is in proportion
of u(us2u§) due to Ja

s§ @cf. Eq. ~C7!#. These terms are
negligible when the mixture is more or less homogeneo
Also, when the diffusion velocity (us2u§) vanishes, the ap
proximation in Eq.~46! becomes exact.

Some remarks to place the present work in perspective
in order. Unlike most existing lattice Boltzmann models f
binary mixtures @22–27#, the mutual diffusion and self
diffusion coefficients of the present model are independen
the viscosity.~We note that an existing model proposed
Flekko”y @20# already has this feature.! The diffusion coeffi-
cients depend on the relaxation parametertD and relevant
physical properties of the mixture, such as the molecu
masses of each speciesms andm§ , etc. The present model i
therefore capable of incorporating more general physics
addition, the present model can simulate both miscible
immiscible binary mixtures by changing the sign of (tD
21/2), i.e., for positive (tD21/2), the mixture is miscible
and for negative (tD21/2), the mixture is immiscible. We
have performed numerical simulations to verify that:~a! the
03630
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diffusion coefficientDs§* depends ontD as given by Eq.~39!
and it is independent ofts and t§ ; and ~b! when (tD
21/2),0, spinodal decomposition or separation~antidiffu-
sion! between different species in the mixture occurs.~The
details of the numerical results will be reported elsewher!

VII. DISCUSSION AND CONCLUSIONS

We have constructed a lattice Boltzmann model for bin
mixtures with several important features. All the modeli
issues are addressed at the continuum level within the fra
work of extended kinetic theory. The lattice Boltzman
model is then directly derived from the continuous kine
model equations using a formal discretization procedure.
lattice model thus inherits the sound physics and mathem
cal rigor incumbent in kinetic theory. This is in contrast
previous lattice Boltzmann models for mixtures@22–27#,
which are not directly based on the fundamental physics
continuum kinetic equations. These models rely on fictitio
interactions@22,23# or heuristic free energies@24–27# to pro-
duce the requisite mixing.~Many defects of the free-energ
models@24–27# are due to the incorrectly defined equilibr
@18#.! These nonphysical effects present a further probl
since they are not easily amenable to mathematical ana
@17,18#. The heuristic elements of the previous lattice Bol
mann models@22–27# have been eliminated, resulting in
physically justifiable model that is simple to compute. Fu
ther, due to the close connection to kinetic theory, the d
vation of the hydrodynamic equations associated with
lattice Boltzmann model is significantly simplified and re
dered mathematically more rigorous. The derivation of
hydrodynamic equations from the previous lattice models
much less rigorous@22–27#.

The second important feature of the present work is t
the model is based upon a two-fluid theory of binary m
tures. The previous models@19–27,51#, on the other hand
are derived from a seemingly simpler, but highly restrictiv
one-fluid theory. In the single-fluid models with BGK ap
proximation one is constrained to use thead hoc ‘‘equilib-
rium velocity’’ @22,23,51#

u(eq )5
~t§rsus1tsr§u§!

~t§rs1tsr§!

in the equilibrium distribution functionf a
s(0) in order to sat-

isfy the local conservation laws. As a result, the viscous
laxation process and the diffusion process are insepara
The analysis of these models therefore becomes unnece
ily tedious and cumbersome@22,23#. The models with free
energies@24–27# do not yield correct hydrodynamic equa
tions @17,18#, mostly due to the incorrectly defined equilib
rium distribution functions used in these models@18,62#.
Furthermore, single-fluid models cannot be applied to m
tures of species with vastly different properties. In t
present two-fluid model, the diffusion behavior is decoup
from viscous relaxation. The diffusivity is determined by th
parametertD and the physical properties of the mixture. Th
model is capable of simulating either miscible or immiscib
fluids by changing the sign of (tD21/2).
2-7
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The proposed LBE model for binary mixtures simulat
diffusion by considering a mutual interaction term leading
the diffusion velocity (us2u§), which is directly related to
the diffusion driving force in binary mixtures. The diffusio
velocity (us2u§) is of the first order in the density gradien
“r. This suggests that the proposed model, however, d
not include any higher-order terms of the density gradie
This in turn implies that the proposed model does not hav
surface tension, which is related to the density gradi
squareu“ru2. To include the effect due surface tension, t
terms related tou“ru2 must be explicitly considered.

To further improve the proposed lattice Boltzmann mo
for binary mixing, efforts are currently underway are:~a!
development of a multiple-relaxation-time model for t
self-collision term@57–59# that will significantly enhance the
numerical stability of the scheme@58,59#; ~b! consideration
of models with surface tension;~c! inclusion of thermal dif-
fusion effects which may be important in combustion app
cations; and, ~d! development of a model for non
Maxwellian molecules. It should be noted that all t
existing lattice Boltzmann models are only applicable to
Maxwell molecules as a direct consequence of the linear
tion of the Boltzmann equation. This limitation can be ov
come by either using a different expansion of the distribut
function, or by including the non-Maxwellian effects in th
collision terms.
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APPENDIX A: ITERATIVE SOLUTION
OF THE BOLTZMANN EQUATION

We present a short description of the iterative proced
@43# to solve the Boltzmann equation

Dt f 5Q@ f #, ~A1!

whereDt5] t1j•“ andQ@ f # is the collision term. The (n
11)th iteration solutionf (n11) is obtained from thenth it-
eration solutionf (n) by solving the equation

Q@ f (n11)#5Dt f
(n), ~A2!

subject to the following conservation constraints

E djf (n11)F 1

j

j2
G5E djf (0)F 1

j

j2
G , ~A3!

where f (0)5 f (0)(r (n11),u(n11),T(n11)) is the equilibrium
distribution function that depends on the hydrodynami
momentsr, u, andT computed fromf (n11). Following the
03630
es
t.
a
t

l

-

e
a-
-
n

.

-
-

e

l

Chapman-Enskog procedure, the temporal derivatives are
moved by using the conservation equations

] tr
(n11)52“•~ru!,

] tu
(n11)52u•“u1a2

1

r
“•P(n),

] te
(n11)52“•~eu!1ra•u2“•q(n)1P(n):“u,

wheree is the internal energy ande5(D/2)nkBT for ideal
gases, andP and q are the stress tenor and the heat flu
respectively. On right-hand side of the above equations,
hydrodynamical momentsr, u, ande are computed from the
(n11)th iteration solutionf (n11) but their superscript (n
11) are omitted since they are conserved quantities. On
other hand, the stress tensorP and the heat fluxq, which are
not conserved, are denoted with the superscriptn as they are
obtained from the solution of the previous iterationf (n).

In general, the iterative procedure described above is
pected to converge more rapidly than a procedure of suc
sive approximation, such as the Chapman-Enskog proce
for the Boltzmann equation. The reason is that in the itera
procedure the~nonlinear! integral equation must be solved
each step as given by Eq.~A2!, whereas in the Chapman
Enskog procedure the integral equation is only solved at
initial step and at all approximation of higher order only t
linearized integral equation is solved.

APPENDIX B: THE EQUILIBRIUM DISTRIBUTION
FUNCTION

We consider the equilibrium distribution function of Eq
~17! for s species based on its mass velocityus . The distri-
bution function can be written in terms of the mixture velo
ity u as follows:

expF2
1

2

~j2us!2

RsT G
5expF2

1

2

~j2u!2

RsT GexpF ~j2u!•~u2us!

RsT G
3expF2

1

2

~u2us!2

RsT G . ~B1!

With the procedure described in Refs.@4,5#, f a
s(eq) of Eq.

~22b! is the second-order Taylor expansion of the first exp
nential in the right-hand side of the above equality. Beca
the velocity difference (u2us) is considered to be a sma
quantity @49#, the second exponential in the right-hand si
of the above equality can be approximated by its first-or
Taylor expansion:

exp@bs~j2u!•~u2us!#'11bs~j2u!•~us2u!, ~B2!

wherebs51/RsT. Since the velocity difference (u2us) is
small, the third exponential in the right-hand side that d
pends on (u2us)2 can be neglected in a first-order approx
mation. It should be noted that this term affects the tempe
2-8
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ture difference @cf. Eqs. ~8b! and ~12b!#, and must be
included if thermal diffusion is important. For the case
isothermal mixing considered here the simplifications yi
the final result of the equilibrium distribution function fo
f s

s(0) given by Eq.~22a! after the velocity spacej is properly
discretized@4,5#.

APPENDIX C: CHAPMAN-ENSKOG ANALYSIS

In the Chapman-Enskog expansion, we introduce a sm
parameter« ~which is the Knudsen number!, and

f a
s5 f a

s(0)1« f a
s(1)1•••, ~C1a!

] t5«] t0
1«2] t1

1•••, ~C1b!

“→«“. ~C1c!

The left-hand side of Eq.~18! is expanded in a Taylor serie
in d t up to second-order first, and then is substituted with
expansions of«:

f a
s~xi1ead t ,t1d t!2 f a

s~xi ,t !

5«d tDa f a
s1 1

2 «2d t
2DaDa f a

s1•••

5«d tDa
(0)f a

s(0)1«2d t~] t1
f a

s(0)1Da
(0)f a

s(1)

1 1
2 d tDa

(0)Da
(0)f a

s(0)!1•••,

where Eqs.~C1! have been substituted, and

Da[] t1ea•“, and Da
(0)[] t0

1ea•“.

The first few equations of a set of successive equations in
order of« obtained from the lattice Boltzmann equation~18!
are

«0: f a
s(0)5 f a

s(eq)F11
~ea2u!•~us2u!

RsT G , ~C2a!

«1:d tDa
(0)f a

s(0)52
1

ts
f a

s(1)1Ja
s§2d tFa , ~C2b!

«2:d t~] t1
f a

s(0)1Da
(0)f a

s(1)1 1
2 d tDa

(0)Da
(0)f a

s(0)!52
1

ts
f a

s(2) .

~C2c!

In the Chapman-Enskog analysis, it is assumed that the
tual interaction termJa

s§ as well as the forcing termFa are of
the first order in« @17,18,63,64#.

The first few moments of the equilibrium distributio
function f a

s(0) can be easily computed:

(
a

f a
s(0)5rs , ~C3a!

(
a

f a
s(0)ea5rsus , ~C3b!
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f a
s(0)ea iea j5RsTrsd i j 1rsuiuj1rsF ~us2u! iuj

1~us2u! jui2
uiuju•~us2u!

RsT G
'RsTrsd i j 1rsuiuj , ~C3c!

(
a

f a
s(0)ea iea jeak5RsTrsD i jkl ulF12

u•~us2u!

RsT G
1RsTrsD i jkl ~us2u! l1•••

'RsTrs~d i j usk1d jkus i1dkius j !,

~C3d!

whereea i is the i th Cartesian component of the vectorea
and

D i jkl 5d i j dkl1d ikd j l 1d i l d jk .

In the second- and third-order moments off a
s(0) in Eqs.

~C3c! and ~C3d!, respectively, the terms involving produc
of the velocity and the velocity difference are neglected.

With the substitution of Eq.~C2b!, Eq. ~C2c! becomes

d t@] t1
f a

s(0)1Da
(0)f a

s(1)1 1
2 Da

(0)~Ja
s§2d tFa!#

5
1

ts
@d tDa

(0)f a
s(1)2 f a

s(2)#. ~C4!

Therefore, the second-order~in «) equation for the mass con
servation is

] t1
rs5

1

2
“•F 1

tD

rsr§

r
~us2u§!G52

1

2
d t“•pds ,

~C5!

where the spatial variation of the external force is neglec
because it is canceled out by properly setting the velo
change due to the external forcing todu5 1

2 ad t in the equi-
librium distribution function@63,64#.

By construction of the forcing termFa @given by Eq.
~19c!#, we have

(
a

Faea iea j50. ~C6!

Therefore, the forcing term has no contribution to the pr
sure tensor. However, the partial pressure tensor for e
individual species is affected by the cross-interaction te
Ja

s§ because

(
a

Ja
s§ea iea j52

1

tD

rsr§

r F ~uiduj1ujdui !

2
1

RsT
uiuju•duG , ~C7!
2-9
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wheredu[(us2u§), and dui[(us i2u§ i). The effect due
to Ja

s§ is of higher order inu and us , and thus can be ne
glected in the pressure. Consequently, the partial pres
tensor can be approximated as the following:

Pi j
s(1)5(

a
f a

s(1)ea iea j

52tsd t(
a

Da
(0)f a

s(0)ea iea j

52tsd tF] t0(a f a
s(0)ea iea j1(

a
“•ea f a

s(0)ea iea j G
e
5

Y.

f
,

tt

et

d

s,

03630
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52tsd t@] t0
~RsTrsd i j 1rsuiuj !1RsT~] jrsus i

1] irsus j1d i j“•rsus!#1•••

52tsd t@RsT~] t0
rs1“•rsus!d i j 1] t0

~rsuiuj !

1RsT~] jrsus i1] irsus j !#1•••

'2tsd tRsT~] jrsus i1] irsus j !, ~C8!

where the terms smaller thanO(M2) (M is the mach num-
ber! are dropped as usual@65#. Therefore,

] jPi j
s(1)'2tsd tRsTrs¹2us i . ~C9!
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